量子点活细胞成像应用的实验方案建议
量子点活细胞成像应用的实验方案建议
量子点(Quantum dot, QD)是一种新型荧光纳米材料,又称半导体纳米晶,呈近似球形,三维尺寸在2-10nm,具有明显的量子效应,其物理、光学、电学特性优于传统有机荧光染料,是新一代荧光标记探针的优质选择。
Chan等将量子点与传统有机荧光染料进行了光学特性的比较,发现量子点的荧光亮度是传统荧光染料的20倍、量子点的光稳定性是传统荧光染料的100倍。但是,量子点作为无机合成的纳米材料,其大小、化合价以及细胞内递送等方面也存在一定的局限性。建议研究者根据实验目的和实验设计,综合考虑量子点的光学特性和物理化学特性,选择合适的量子点细胞标记方法。本文综合了量子点在活细胞成像研究中的相关技术,以供研究者参考。
一、量子点与传统荧光染料的比较
1. 荧光亮度:单个量子点比绝大多数单个有机荧光染料的光亮度强,可多出数个数量级(Wu et al, 2003)。
2. 光谱特性:与传统荧光染料完全不同,量子点的激发光谱范围宽泛,在350nm至450nm范围内的紫外光及蓝色光源均可激发量子点发光;同时,量子点的发射光谱非常窄,半峰宽小于30nm,而传统荧光染料的半峰宽达到100nm。量子点上述特性使其适合同一波长的多色激发、而且多色光之间没有相互干扰。
3. 光稳定性及抗代谢降解能力:量子点的光稳定性强于传统荧光染料,可达数个数量级。同时,量子点自身的无机特性,使其具有抗代谢降解的能力,可在机体内稳定存在数周至数月,适合对细胞状态和分布进行体内示踪。
4. 与生物分子的耦联:量子点表面积较大,除了可以耦联靶标分子(蛋白质、多肽、核酸等),还可以耦联治疗药物(如抗肿瘤药物)和检测试剂(如磁珠、放射性同位素等)。因此,量子点在分子示踪、活细胞成像、肿瘤诊断与治疗以及纳米载药等研究领域具有广泛的应用。
5. 大小:量子点作为呈现壳-核结构的纳米材料,其核心的大小一般是3~10nm,其表面需要包被、修饰及水化处理。商品化的量子点一般都大于20nm,该大小的量子点适合在体标记组织(如前哨淋巴结、肿瘤等)或示踪细胞,但是对于标记单个生物分子,则不利于单分子的细胞内迁移和轨迹示踪,需要定制粒径更小的量子点。
6. 化合价:目前商品化的量子点都是以多价偶联方式在其表面结合多个分子,但是,单分子成像与示踪需要进行单分子标记,目前在量子点表面以单价偶联方式进行单分子标记尚未商品化、需要专门定制。
7. 细胞内递送:量子点的大小及无机特性使其难于进入细胞,量子点在细胞内倾向于聚集,不利于细胞内分子成像与示踪的应用。目前,已有相关辅助试剂或应用细胞穿膜肽等技术,从而提高量子点进入细胞的效率、并保持量子点在细胞内的均匀分布。
二、细胞标记方法
量子点可以标记细胞膜表面分子和细胞内分子,其中对细胞膜表面分子的标记更为简单易行。如果研究者的实验目的为示踪细胞或组织,或是研究细胞表面受体,只需将量子点与膜表面分子进行标记;而如果研究者的实验目的是示踪细胞内的分子,在标记之外,尚需考虑量子点标记物的细胞内递送方法。关于细胞标记和细胞内递送的方法总结如下:
1. 细胞表面分子的标记
方法一:量子点与膜表面分子的抗体或配体耦联
①量子点纯化;
②确定靶细胞表面的目标分子,以其抗体或配体与量子点耦联;
③将上述抗体/配体-量子点偶联物,与细胞孵育(建议4℃孵育,以减少细胞对量子点的内吞)。
优点:细胞标记步骤少,只需抗体/配体-量子点耦联物与细胞的一步孵育反应。
缺点:针对不同的抗体或配体,需要摸索不同的量子点耦联方法;同时,某些抗体或配体可能难以进行有效耦联。
方法二:通过链霉亲和素-生物素系统实现量子点对膜表面分子的标记
①链霉亲合素-量子点纯化;
②确定靶细胞表面的目标分子,将其抗体或配体进行生物素化处理;
③将生物素化的抗体或配体,与细胞孵育;
④以培养基或合适的缓冲液清洗细胞,去除过量的生物素化的抗体或配体;
⑤将链霉亲合素-量子点,与细胞孵育(建议4℃孵育,以减少细胞对量子点的内吞)。
优点:对抗体或配体进行生物素化处理简单易行;同时,链霉亲合素-生物素系统具有信号放大作用。
缺点:细胞标记步骤较多,需要两步孵育反应。
2. 细胞内分子的标记
上述标记细胞表面分子的方法,均可用于标记细胞内分子,即:标记形成抗体/配体-量子点偶联物或生物素-链霉亲和素-量子点系统。但是与细胞表面标记不同,对于细胞内分子的标记,尚需考虑量子点偶联物的细胞内递送问题,具体递送方法总结如下,以供研究者参考。
方法一:细胞直接内吞量子点
① 将水溶性量子点与细胞共孵育数小时;
② 以合适的培养基或缓冲液洗去过量的量子点。
对于不同的细胞,其内吞能力不同,需研究者对量子点的用量和孵育时间进行摸索。同时,上述量子点进入细胞后,存在于内吞体中。
方法二:通过阳离子脂质体递送量子点入胞
① 制备并纯化带负电荷的量子点(如表面羧基化修饰的量子点);
② 在无血清培养基中与脂质体转染试剂(如Lipofectamine2000或FuGENE6)共孵育(详细步骤参见转染试剂说明书)。
该方法在肿瘤细胞中适用良好,但是对于不同的细胞、不同的转染试剂,转染能力和效率可能不同,需研究者对试剂用量和孵育时间进行摸索。
方法三:通过胞饮作用递送量子点入胞
Invitrogen(Life technologies)公司试剂——Influx pinocytic cell-loading reagent(I14402),通过胞饮囊泡的渗透性裂解,将水溶性量子点递送入活细胞。以该方法进入细胞的量子点,在细胞内分布均匀,没有聚集成团的现象、不形成胞内体。该方法周期约30min,可通过重复加载来增强量子点入胞的量,同时可以再生而重复利用。该方法不会对细胞造成物理破坏,比显微注射简单,同时不会改变细胞活力、不会导致细胞内溶酶体酶的释放。详细步骤参见试剂说明书。
方法四:通过穿膜肽协助量子点入胞
细胞穿膜肽(Cell-Penetrating Peptides, CPP)又称PTDs(Protein Transduction Domains),包含大量碱性氨基酸,主要来源于HIV-1的Tat蛋白,其中多聚精氨酸(Polyarginine)较多聚赖氨酸/组氨酸/鸟氨酸等更高效,最高效的是含octa-arginine或nona-arginine(R9)的多肽。CPP的穿膜作用不依赖于其它分子或耗能途径,几乎没有细胞毒性。CPP可将直径达到200nm的物质递送入细胞,实验研究显示,富含精氨酸的CPPs可向细胞内递送蛋白质、DNA、RNA以及量子点。
CPPs与量子点的连接方式包括共价偶联及非共价偶联,而且CPPs可同时递送共价及非共价偶联物进入细胞。量子点与CPPs的共价偶联,是基于量子点表面的不同活性基团,利用BS、EDC、sulfo-SMCC、NHS-PEO4-MAL等交联试剂形成量子点-CPP偶联物;同时,可以通过生物素-亲和素系统、静电相互作用、金属亲和作用等方法,实现量子点与CPPs的非共价偶联。总之,针对不同的多肽和实验需求,需要研究者进行必要的选择和实验探索,更详细的实验方法请参见相关文献。
方法五:显微注射
玻璃毛细管具有亚微粒级别的尖头,可将量子点于局部直接注入细胞。该方法中,量子点用量很少(1-10pmol),对细胞的生理特性和发育没有明显影响。
如:刮擦加载量子点入胞,崩溃细胞膜直接将量子点载入细胞浆,电穿孔,低渗休克等,详见相关文献。
如果您想详细了解量子点活细胞成像的应用,可在线预约讲座或实验沟通: